
15.053 February 15, 2007 

z The Geometry of Linear Programs 
– The simplex algorithm 
– More properties of linear programs 

Pentagonal prism 1 



2 

Overview of Lecture 

z Review of Geometry 

z The Simplex Algorithm 

z More on convexity 

z RHS Sensitivity Analysis 



Quotes of the Day 

Geometry is not true, it is 
advantageous. 

Jules H. Poincare 

I've always been passionate about 
geometry and the study of three-
dimensional forms. 

Erno Rubik 
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Review of Geometry 
A set S is convex if for every two points in the 
set, the line segment joining the points is also in 
the set; that is, 

p1 

p2 

Theorem. The feasible 
region of a linear program is 
convex. 

if p1, p2 ∈ S, then so is(1-λ)p1 + λp2 for λ ∈ [0,1] 



Corner Points


z	 A corner point of the feasible region is a point that 
is not the midpoint of two other points of the 
feasible region. 

z	 All feasible LPs with non-negativity constraints 
have at least one corner point. 

If an LP is feasible, has non-
negativity constraints, and has an 
optimal solution, then there is a 
corner point that is optimal. 
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Solving for Corner Points 

z In two dimensions, a corner point is the 
intersection of two equality constraints.  

z In three dimensions, a corner point is the 
intersection of three constraints. (3 planes) 

x y 

0 ≤ x ≤ 2


0 ≤ y ≤ 2


z
 0 ≤ z ≤ 2 

x - y  + z ≤ 3 


The red corner point is the intersection of three planes


x = 2


z = 

The unique solution is x = 2, y = 1, z = 2.


2


x - y + z = 3
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There are 3 Types of Linear Programs 

Those whose objective 
value is unbounded 

Those with no feasible solution. 
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Isoprofit 
line 

Those with an optimal solution 
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The Simplex Method in Two Dimensions 

81 2 3 4 5 6 
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Start at any feasible corner point. 
Move to an adjacent corner point with better 
objective value.  Move along an edge of the feasible 
region. 
Continue until no adjacent corner point has a better 
objective value. 

Max z = 3 x  + 5 y 

3 x  + 5 y = 19 



The Simplex Method Again 
Start at any feasible corner point.

Move to an adjacent corner point with better 


x
 objective value.  Move along an edge of the feasible 
region.

5

Continue until no adjacent corner point has a better 
objective value. 4


3


2
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The Simplex Method in 3 Dimensions 

Start at any feasible corner point. 
Move to an adjacent corner point with better objective value.  
Move along an edge of the feasible region. 
Continue until no adjacent corner point has a better 
objective value. 

Note:  in two dimensions, the 
“edges” are the intersections of 
two constraints. The corner 
points are the intersection of 
three constraints. 
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An Example of the Simplex Method in 3 Dimensions 

Maximize y 

x 

y 

z 

y=.1 

y=.2 y=.3 

y=1 

y=1.5 

y=1.7 

y=2 

y=0 

The number of 
iterations 
depends upon 
which edge is 
chosen at 
each iteration. 

In practice, the simplex method is very efficient, 
even on very complex large scale LPs. 

This is a twisted cube. 
Notice how the simplex method starting at the origin could move to the optimum in 
1 step or pivot. 
It is also possible for the simplex method to take 7 pivots, thus visiting each corner 
point. 

Klee and Minty developed an example that is very similar that has n variables. It is 
possible that the simplex method would take 2^n – 1 pivots on these examples, thus 
showing that the simplex method can take exponential time in the worst case. 

In practice, there may be many different edges that the simplex method can select at 
a given iteration.  The speed in which the simplex method moves to the optimum 
depends on the choice of the edge. 



The Simplex Method on Unbounded LPs 

Maximize x 

y If the objective is
5 unbounded from 

above, then the4 
simplex method 

3 will move 
infinitely far along 

2 an edge. 
1 
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Interior Point Algorithms for LP 

3x + 5y = 16 

There are a variety of algorithms that move within the interior of linear programs.  
These algorithms typically take far fewer iterations than the simplex algorithm and 
far more time per iteration for large problems.  Sometimes interior point algorithms 
obtain answers quicker than the simplex algorithm.  Often they are slower. 

Interior point algorithms were popularized by Karmarkar in 1984, who proved that 
the number of iterations is bounded by a polynomial in the dimension of the 
problem and in the number of bits needed to describe the coefficients. 

While interior point algorithms are ingenious and have practical import, they are 
also beyond the scope of 15.053, and will not be covered further. 



Comments on Optimality Conditions 

z	 Linear programming produces both the optimal 
solution and the proof of optimality.  (This is true 
for any number of variables, and even if many of 
the constraints are equality constraints.) 
–	 special among optimization problems 
–	 very valuable 
–	 “The Gold Standard” for optimization 

z	 For other optimization problems in the subject, 
we will settle for bounds from optimality 
–	 e.g., we will be happy if we can guarantee at most 10% 

from optimality 
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Convex Combinations 

Suppose that p1, p2, …, pk are all vectors (or points). 

1 1 1 2 2Let ... .k k kp p p pλ λ λ+ = + + + 

We say that pk+1 is a convex combination of p1, …, pk 
if the following are true: 

1 2 ... 1 
and 0  for 1 to . 

k 

i i k 
λ λ λ 

λ 

+ + + = 

≥ = 

Suppose k = 2. What points 
are convex combinations of 
p1 and p2? 

p1 

p2 
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More on Convex Combinations 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

What points can be represented as the convex 
combination of (0,0), (0, 4), and (3, 0)? 

λ1 (0, 0) 

+ λ2 (0, 4) 

+ λ3 (3, 0) 
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Convex Combinations and Convex Hulls 

The convex hull of points p1, …, pk is the smallest 
convex region containing all of the points.  It is 
also the set of all points that can be expressed as 
convex combinations of p1 to pk. 

Note that the 
convex hull of 
points in 2 
dimensions looks 
like an LP feasible 
region. 

1 2 3 4 5 6 17 
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Convex Hulls in 3 dimensions 

z x 

y 

In Slide show mode, the figure is revealed as a cube that is partially cut off. 



Representation Theorem 

z	 Theorem.   Every bounded polyhedra (linear programming 
feasible region) can be represented as a convex hull of its 
corner points. 

z	 Theorem.  The convex hull of a set of points is a bounded 
linear programming feasible region. 

z	 Usually, we prefer to represent a linear program in terms of 
constraints. But there are times when it is useful to 
represent it as the convex combination of corner points. 
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Mental Break 

What are the odds? 



Sensitivity Analysis 

z Sensitivity analysis:  Determining the marginal 
effect on the optimal objective function if we 
make small changes in the data. 

z In LP, we focus on two types of sensitivity 
analysis that are very useful and very easy for an 
LP package to compute 
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The revised DTC example


z = 3x + 5y 

2x + 3y ≤ 10 

x + 2y ≤ 6 

x + y ≤ 5 

x ≤ 4 

y ≤ 3 
x, y ≥ 0 

Gathering time 

Smoothing time 

Delivery Time 

Demand: kits 

Demand: shields 

non-negativity 
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We could have used the original variable names of K and S, but it is simpler to use x 
and y since we usually think of the two axes as the x and y axis. 



The optimal solution 

In two dimensions, a corner point lies at 

23x 

y 
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the intersection of two lines. 

2x +3y = 10 

x +2y = 6 

x + 2y =  6 
2x + 3y = 10 

2x + 4y = 12 
2x + 3y = 10 

y = 2 

gathering time 

smoothing time 

x = 2, z = 16 

z = 3x + 5y 

It’s very useful that the corner point lies at the intersection of two lines.  Then 
solving a system of equations with two variables and two equations will give the 
value of the corner point. 



2x +3y = 10 
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Varying the RHS 
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Suppose that we consider the problem in which 
gathering time is parameterized by G. 

x +2y = 6 

gathering time 

smoothing time 

Let z(G) be the 
optimal objective 
value when 
gathering time is 
G, and all other 
data is 
unchanged. 

z(10) = 16 

What is z’(10)? 
(derivative) 

2x +3y = G 

It’s very useful that the corner point lies at the intersection of two lines.  Then 
solving a system of equations with two variables and two equations will give the 
value of the corner point. 



Computing the derivative 

z '(10) = limΔ→0 
z(10 + Δ −) z(10)


Δ


Key observation: if Δ is small, then the optimum 
corner point of the problem will be the 
intersection of the smoothing time constraint 
and the gathering constraint. 

That is, the constraints that define the corner 
point will not change. 

25 



On the new corner point 

The solution value 
changes, but the 
“structure” of the 
solution does not 

y 

1 

2 

3 

2x +3y = G 

x +2y = 6 

gathering time 

smoothing time change. 

x 26

1 2 3 4
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Computing the New Corner Point 

x 

y 

1 2 3 4 

1 

2 

3 

2x +3y = 10 + Δ 

x +2y = 6 

x + 2y =  6 
2x + 3y = 10 + Δ 

2x + 4y = 12 
2x + 3y = 10 + Δ 

y = 2 - Δ 

gathering time 

smoothing time 

x = 2 + 2Δ 
z = 16 + Δ 

z = 3x + 5y 
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The Shadow Price 

0 
(10 ) (10) '(10) lim z z z Δ→  

+ Δ  −  
= 

Δ 

0 
(16 ) 16 '(10) lim 1z Δ→  

+ Δ  −  
= = 

Δ 

This is the shadow price of the gathering constraint. 

Note. We only needed that the corner point was the 
intersection of the gathering and smoothing constraint. 

Note that z’(10 + Δ) 
is linear in Δ. 



More on Shadow Prices


The shadow price of a constraint is the unit increase in 
the optimal objective value per unit increase in the 
RHS of the constraint.  It is also a derivative. 

Let p denote the shadow price. 

If the RHS of gathering increases from 10 to 10 + Δ, 
then the objective value increases from 16 to 16 + pΔ, 
that is, it increases by pΔ. 
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Exercises 

z z(10) = 16; z’(10) = 1 (The shadow price is 1)


z Fact: z(11) = 16 + 1 = 17.


z What is z(10.2)?


z What is z(9.7)?


z What is z(0)? (trick question)
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Computing the Shadow Price of a Constraint 

z Step 1. Determine the binding
constraints that determine the 
corner point. 

z Step 2. Add Δ to the RHS of the 
constraint whose shadow price we
are computing. 

z Step 3. Solve the system of 
equations. 

z Step 4. Compute the “increase” in 
z when Δ increases from 0 to 1 
(i.e., compute the derivative) 

x + 2y =  6 
2x + 3y = 10 

x + 2y =  6 
2x + 3y = 10 + Δ 

x = 2 + 2Δ 
y = 2 - Δ 

z(10 + Δ) = 16 + Δ 
Shadow price = 1. 



Bounds on RHS coefficients in 
Sensitivity Analysis 

z	 Recall that the optimum solution is a corner 
point, which in 2 dimensions is the solution of 2 
equations in 2 variables, and the equations are 
the binding constraints. 

z	 Compute the largest changes in the RHS 
coefficient so that all constraints remain satisfied. 

32 



33 

What happens if the RHS changes by a lot? 

x 

y 

1 2 3 4 

1 

2 

3 

2x +3y = G 
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More Sensitivity Analysis: Determining the Interval 

x = 2 + 2 Δ ; y = 2 - Δ 

z = 3 x  + 5 y   (in 10s) Maximize Profit z = 16 + Δ 

4 + Δ ≤ 5 

2 + 2Δ ≤ 4 

2 - Δ ≤ 3 

2 + 2Δ ≥  0 
2 - Δ ≥  0 

2 x + 3 y ≤ 10 + ΔGathering time: 

x + 2 y ≤ 6Smoothing time: 

x + y ≤ 5Delivery time: 

y ≤ 3Shield demand: 

x ≤ 4Slingshot demand: 

K,S ≥ 0Non-negativity: 

So, -1 ≤ Δ ≤ 1 

10 + Δ ≤ 10 + Δ 

6 ≤ 6 

Constraint after 
substitution. 



Summary for changes in RHS coefficients 

z	 Determine the binding constraints 

z	 Determine the change in the “corner point 
solution” as a function of Δ. 

z	 Compute the largest and smallest values of Δ so 
that the solution stays feasible. 

z	 The shadow price is valid so long as the “corner 
point solution” remains optimal, which is so long 
as it is feasible. 
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And now, it’s time for ….. 

“Who wants a piece of candy” is not stored on the web. 


